
Fundamentals of multilayer
architecture

Intelligent Infrastructure Design for the Internet of Things
Antonio Navarro

3

Index
• References
• Introduction
• Single-layer architecture

– Features
– Advantages and disadvantages

• Two-layer architecture
– Features
– Advantages and disadvantages
– Related patterns

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

4

Index

• Multilayer architecture
– Features
– Advantages and disadvantages
– Related patterns

• Front controller pattern
• Application Controller Pattern
• MVC Pattern

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

5

Index

• Transfer pattern
• Data Access Object Pattern
• Application service pattern
• Pattern subject of business
• Domain store pattern
• Conclusions

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

6

References

• Alur, D., Malks, D., Crupi. J. Core J2EE Design Patterns:
Best Practices and Design Strategies. 2nd Edition. Prentice
Hall, 2003

• Fowler, M. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002

• Java Platform Enterprise Edition 7 Tutorial
https://docs.oracle.com/javaee/7/tutorial/index.html

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

7

Introduction

• In this topic we will look at the fundamentals of multilayer
architecture.

• It is a basic architecture for the design of applications with
important integration needs.

Intelligent Infrastructure Design for IoT- MiOT UCM Antonio Navarro

8

Introduction

• We will not worry about obtaining good designs at the
component level of each layer.

• This is dealt with by disciplines such as:
– Human-computer interaction
– Programming
– Design patterns
– Databases

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

9

Introduction

• We will take care of quality from an architectural
point of view.

• Architecture* is the fundamental organization of a
system, expressed in its components, their
relationships with each other, and in the environment
and principles that guide its design and evolution.

IEEE Std 1471-2000 IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems Intelligent Infrastructure Design for IoT- MiOT UCM

Antonio Navarro

10

Introduction

• In particular, we will look at the multilayer architecture and
its fundamental patterns.
– The catalog contains 21 patterns
– We will see a basic multilayer with 4 patterns

• Although these patterns are drawn from web engineering*,
they are also applicable to non-web applications.

*http://www.corej2eepatterns.com/index.htm
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

11

Introduction

• According to Christopher Alexander, "a pattern describes a
problem that occurs over and over again in our
environment, as well as the solution to that problem in such
a way that you can apply this solution a million times,
without doing the same thing twice".

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

12

Introduction

• Although Alexander was referring to patterns in cities and
buildings, what he says is also valid for OO design patterns.

• We can say that the design patterns:
- They are simple and elegant solutions to specific OO software
design problems.
- They represent solutions that have been developed and have
evolved over time.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

13

Introduction

• Design patterns do not take into account issues such as:
- Data structures
- Domain-specific designs

• They are descriptions of classes and related objects that are
particularized to solve a general design problem in a given
context.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

14

Introduction

• Each design pattern identifies:
- Participating classes and instances
- Roles and collaborations of these classes and instances
- The distribution of responsibilities

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

15

Introduction

• Some pattern sources:
- GRASP*, by Craig Larman
- Gang of Four (GoF) patterns, by Eric Gamma et al.
- Core J2EE patterns, by Alur et al.
- Patterns of Enterprise Application Architecture, by Fowler et al.
- SOA Design Patterns, by Thomas Erl

General Responsibility Assignment Software Patterns

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

16

Single-layer architecture
Features

• The single-layer architecture does not divide the system into
presentation, business and integration.

Arquitectura de una capa

Presentación

 Negocio

Integración

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

17

Single-layer architecture
Features

System classes

System

Data

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

18

Single-layer architecture
Features

System behavior

informar

 : actor : Sistema : Datos

baja usuario

recoger id usuario

obtener usuario

validar

[OK] dar baja usuario

informar

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

19

Single-layer architecture
Advantages and disadvantages

• Advantages
– Conceptual simplicity

• Inconveniences
– Neither the user interface, the business logic nor the data

representation can be modified without affecting the other layers.
– Factual complication

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

20

Two-layer architecture
Features

• The two-layer architecture differentiates between the
presentation layer and the rest of the system.

• Does not differentiate integration business

Presentación

 Negocio

Integración

Servicios objetos transferencia

Arquitectura de dos capas

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

21

Two-layer architecture
Features

System classes

Interface

Data

Business and integration

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

22

Two-layer architecture
Features

 : actor : Interfaz : Datos : Negocio e
integracion

baja usuario

recoger id usuario

informar

baja usuario
obtener usuario

validar

[OK] dar de baja usuario
informar

System behavior
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

23

Two-layer architecture
Advantages and disadvantages

• Advantages
– Allows changes to the user interface or to the rest of the system

without mutual interference
– Factual simplicity

• Inconveniences
– More architectural complication than single-layer architecture
– Cannot change business logic or data representation without

mutual interference

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

24

Two-layer architecture
Related patterns

• Although not strictly necessary, it is often used:
– MVC

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

25

Multilayer architecture
Features

• The multilayer architecture considers a presentation layer, a
business layer, and an integration layer.

Presentación

Negocio

Integración

Servicios

Data Access Object

objetos transferencia

objetos transferencia

Arquitectura multicapa

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

26

Multilayer architecture
Features

• The presentation layer encapsulates all the presentation
logic required to serve clients accessing the system.

• The business layer provides the system services
• The integration layer is responsible for communication with

external resources and systems.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

27

Multilayer architecture
Features

• In reality, the architecture is five-tiered, as it includes the
client and resource layers

• The client layer represents all the devices or clients of the
system that access the system. It is above the presentation
layer

• The resource layer contains the business data and external
resources. It is under the integration layer

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

28

Multilayer architecture
Features

Presentación

Negocio

Integración

Servicios

Data Access Object

objetos transferencia

objetos transferencia

Arquitectura multicapa

Interfaz
Cliente

Recursos
API

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

29

Multilayer architecture
Features

System classes

Interface

Data

Integration Business

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

30

Multilayer archit. Features
 : actor : Interfaz : Datos : Integracion : Negocio

baja usuario

recoger id usuario

informar

baja usuario

validar

informar

obtener usuario

obtener usuario

[OK] dar de baja usuario

dar de baja usuario

System behavior
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Multilayer architecture
Features

• Note that these are logical layers
• Physical layers are another matter
• Thus, the web presentation layer and the business logic

could be on the same machine or on different machines.

31Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

32

Multilayer architecture
Features

• Advantages
– Any layer can be modified without affecting the others.
– Factual simplicity?

• Inconveniences
– Increased architectural complexity

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

33

Multilayer architecture
Features

• Advantages:
– Integration and reusability
– Encapsulation
– Distribution
– Partitioning
– Scalability
– Improved performance
– Improved reliability

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

34

Multilayer architecture
Features

– Manageability
– Increased consistency and flexibility
– Support for multiple customers
– Independent development
– Rapid development
– Packaging
– Configurability

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

35

Multilayer architecture
Features

• Disadvantages:
– Possible loss of performance and scalability
– Security risks
– Component management

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

36

Multilayer architecture
Related patterns

• Related patterns:
– Presentation

• Front controller
• Application Controller
• MVC

– Business
• Transfer
• Application service

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

37

Multilayer architecture
Related patterns

• Object of business
– Integration

• Data Access Object (DAO)
• Domain store

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Front controller pattern

• Purpose
– Provides an access point for handling requests from the

presentation layer
• Also known as

– Front controller

38Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Front controller pattern

• Motivation
– Avoiding duplicate control logic is desired
– You want to apply a common logic to different requests
– You want to separate the processing logic of the system from the

view
– It is desired to have centralized and controlled access points to the

system.

39Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Front controller pattern

• It must be applied when
– You want to have an initial point of contact for handling requests,

centralizing control logic and managing request handling
activities.

40Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Front controller pattern

• Structure

41

Structure of the front controller pattern

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Front controller pattern

42

Interaction of related objects by the front controller
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Front controller pattern

• Consequences
– Advantages:

• Centralizes control
• Improved application management
• Improved reuse
• Improved separation of roles

– Inconveniences
• In large applications it can grow very large

43Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Front controller pattern

• Example code
public class FrontController extends HttpServlet {
protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException,
java.io.IOException {

processRequest(request, response);

}

44Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Front controller pattern
protected void doPost(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, java.io.IOException {

processRequest(request, response);
}

45Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Front controller pattern
protected void processRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
java.io.IOException {

String page;
ApplicationResources resource =

ApplicationResources.getInstance();
try {

RequestContext requestContext =
new RequestContext(request, response);

46Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Front controller pattern
ApplicationController applicationController = new

ApplicationControllerImpl();
ResponseContext responseContext =
applicationController.handleRequest(requestContext);
applicationController.handleResponse(

requestContext, responseContext);
} catch (Exception e) {

LogManager.logMessage("FrontController:exception : " +
e.getMessage());

request.setAttribute(resource.getMessageAttr(),
"Exception occurred : " + e.getMessage());

page = resource.getErrorPage(e);
47Intelligent Infrastructure Design for IoT- MiOT UCM

Antonio Navarro

Front controller pattern
dispatch(request, response, page);

}
}

// only this function is used if there is an error.
protected void dispatch(HttpServletRequest request,
HttpServletResponse response, String page)
throws javax.servlet.ServletException, java.io.IOException {
RequestDispatcher dispatcher = this.getServletContext().

getRequestDispatcher(page);
dispatcher.forward(request, response);

}

} 48Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Application Controller Pattern

• Purpose
– We want to centralize and modularize the management of actions

and views.
• Also known as

– Application controller

49Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Application Controller Pattern

• Motivation
– You want to reuse the view and action management code.
– You want to improve the extensibility of request handling (e.g.

add use cases to an application incrementally).
– Improved code modularity and maintainability is desired,

facilitating application extension and testing of request handling
code independently of the web container.

50Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Application Controller Pattern

• It must be applied when
– You want to centralize the retrieval and invocation of request

processing components, such as commands and views.

51Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Application Controller Pattern

• Structure:

52

Structure of the application controller pattern

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Application Controller Pattern

53

Interaction between related objects by application controller
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Application Controller Pattern

• Consequences
– Advantages

• Improved modularity
• Improved reuse
• Improved extensibility

– Inconveniences
• Increases the number of objects involved
• In large applications it can grow very large

54Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Application Controller Pattern

55Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

• Example code
interface ApplicationController
{

ResponseContext handleRequest(RequestContext requestContext);

void handleResponse(RequestContext requestContext,
ResponseContext responseContext);
}

Application Controller Pattern

56Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

class WebApplicationController implements ApplicationController
{

public ResponseContext handleRequest(RequestContext requestContext)
{

ResponseContext responseContext = null;

try {
String commandName = requestContext.getCommandName();

Application Controller Pattern

57Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

CommandFactory commandFactory = CommandFactory.getInstance();
Command command = commandFactory.getCommand(commandName);
CommandProcessor commandProcessor = new CommandProcessor();
responseContext = commandProcessor.invoke(command,

requestContext);
} catch (java.lang.InstantiationException e) {
} catch (java.lang.IllegalAccessException e) {
}
return responseContext; }

. . . }

58

MVC Pattern
• In some frameworks the front and application controller are

merged.
• Let's look at a more classic MVC
• The Model View Controller MVC pattern/architecture

divides an interactive application into three components:
- The model contains the basic functionality and data.
- The views display/gather information to/from the user.
- Controllers mediate between views and model

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

59

MVC Pattern

• The MVC pattern has two variants:
– Active model
– Passive model

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

60

MVC Pattern

• Participants in MVC. Active model:

Participants in MVC. Active model

+maneja eventos

Controlador

Vista Modelo+actualiza+accede

+actúa

+genera eventos

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

61

MVC Pattern

• Interaction in MVC. Active model:

: : usuario

 : Vista : Controlador : Modelo

interac túa
evento

actúa

actualiza

accede

Interaction in MVC. Active model
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

62

MVC Pattern

Controlador

ModeloVista

+maneja eventos +actúa
+actualiza

+genera eventos

+accede

• Participants in MVC. Passive model:

Participants in MVC. Passive model
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

63

MVC Pattern

• Interaction in MVC. Passive model:

: : usuario : Vista : Controlador : Modelo

interactúa
evento

actúa

accede

actualiza

Interaction in MVC. Passive model
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

64

MVC Pattern

• Advantages:
– Model independent of output representation and input behavior
– There can be multiple views for the same model
– Independent interface/logic changes

• Disadvantages:
– Complexity

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

65

MVC Pattern

• Example code*:
class Vista extends JFrame implements IVista {

JTextField value;
JButton sum;
public Vista(Model model)

{…………………………

sum= new JButton ("+");
ActionListener controller=

new Controller(model);
sumar.addActionListener(controller);
} ………}

Active model without using java.util.Observer
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

66

MVC Pattern
class Controller implements ActionListener{
............................

public void actionPerformed (ActionEvent e)
{

model.sum();
}

}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

67

MVC Pattern
class Model {

int value;
IVista vista;
.................
void sum()

{ value++;
view.update(this); }

int getValue()
{ return value; }

}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

68

MVC Pattern

public interface IVista {
void update(Object updated);

}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

69

MVC Pattern
class Vista extends JFrame implements IVista {
..........................
public void update (Object o){

Model model= (Model) or;
Integer i= new Integer(model.getValue());
value.setText(i.toString()); }

..........................
}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

70

MVC Pattern

• In the previous example:
– The view that sends events to the controller is the same view that

receives model/controller updates.
– Match the interface event handler and the business event handler

• In general, this is unreasonable (e.g. web applications).

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

71

MVC Pattern

• Regarding the number of controllers, there may be:
- One per event
- One per functionality/stimulus set
- One per application

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

72

MVC Pattern
• Example code*
public class GUIAltaUser extends JFrame {
…………

public GUIAltaUser()
{ setTitle("User registration");

JPanel panel= new JPanel();
JLabel lName= new JLabel("Name:");
final JTextField tName= new JTextField(20);
JLabel lEMail= new JLabel("e-mail:");
final JTextField tName= new JTextField(20);
final JTextField tEMail= new JTextField(20);
JButton accept= new JButton("Accept");
JButton cancel= new JButton("Cancel");

Single controller, passive model
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

73

MVC Pattern

panel.add(lName);
panel.add(tName);
panel.add(lEMail);
panel.add(tEmail);
panel.add(accept);
panel.add(cancel);
getContentPane().add(panel);

pack();

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

74

MVC Pattern
accept.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ setVisible(false);
String name= tName.getText();
String eMail= tEMail.getText();
TUsuario tU= new TUsuario(nombre , eMail);
Controller.getInstance().
action(Events.ALTA_USER, tU);

}
});

……………………………
}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

75

MVC Pattern
public class Event {

public static final int ALTA_USER= 101;
public static final int BAJA_USUARIO= 102;
public static final int SHOW_USER= 103;
…………
public static final RES_ALTA_USER_OK= 401;
public static final RES_ALTA_USER_KO= 402;
…………

}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

76

MVC Pattern
public class Controller {

………
//this is a controller access option
//a services and GUI
//there may be more advanced ones
private SAUsUser saUser;
private IGUI gui;

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

77

MVC Pattern
//naif implementation of a controller table
//according to the singleton, it should be in the subclass
public void action(int event, Object data)
{ switch (event){

case EVENT.ALTA_USER: {
TUser tUser= (TUser) data;
int res= saUser.high(tUser);
if (res>0) gui.update(Event.RES_ALTA_USER_OK,

new Integer(res));
else
gui.update(Event.RES_ALTA_USER_KO, null);
break; }

case Event.UNSUBSCRIBE_USER: { }
……………
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

78

MVC Pattern
public interface IGUI {

// we do not use java.util.Observer
//because it forces the data to be observable

void update(int event, Object data);

}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

79

MVC Pattern
public class GUIBiblioteca extends JFrame implements IGUI {

private static GUIBiblioteca guiLibrary guiLibrary;
private IGUIUser guiUser;
private IGUIPublication guiPublication;
private IGUIPrestamo guiPrestamo;
private Controller controller;

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

80

MVC Pattern
public void update(int event, Object data)

{ switch (event)
{

case Event.SHOW_GUI_LIBRARY:
{ setVisible(true); break; }
case Event.HIDE_GUI_GUIDE_LIBRARY: { setVisible(false); break; }

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

81

MVC Pattern
case EventGUI.RES_ALTA_USER_OK:
{ Integer id= (Integer) data;

JOptionPane.showMessageDialog(null,
"User created with ID: "+id.intValue()); setVisible(true);

break; }

case EventGUI.RES_ALTA_USER_KO:
{ JOptionPane.showMessageDialog(null,

"User could not be created"); setVisible(true); break; }
……………
}
}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

82

MVC Pattern

• Comments:
- The MVC pattern is a particular case of the observer pattern.
- Views in MVC can be nested. In this way a view would be a
particular case of the composite pattern
- By centralizing the interaction between views, and between views
and model, it is easier to change both view selection and model
selection.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

MVC Pattern

83

v1

v2

vn

...

...
vi

Changes without controller

v1

v2

vn

...

...
vi

c

v1

v2

vn

...

...
vi

c
x

Changes with controller

v1

v2

vn

...

...
vi x

x

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

84

Changes without controller Changes with controller

v1

v2

vn

...

m1

m2

mm

...

...
mj

x

x

v1

v2

vn

...

m1

m2

mm

...

...
mj

v1

v2

vn

...

m1

m2

mm

...

...
mj

c

MVC Pattern

x

v1

v2

vn

...

m1

m2

mm

...

...
mj

c

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

85

Transfer pattern

• Purpose
– Independence of data exchange between layers

• Also known as
– Transfer

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

86

Transfer pattern

• Motivation
– If we want to make the layers independent, they cannot have

knowledge of the representation of the entities of our system
within each layer.

– For example, if we access relational databases, clients should be
aware of the existence of columns in the data.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

87

Transfer pattern

• It must be applied when
– You do not want to know the internal representation of an entity

within a layer.
• Note

– As a communication mechanism between layers, they are
serializable objects.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

88

Transfer pattern

• Structure

Structure of the transfer pattern

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

89

Transfer pattern

Interaction between objects related by the transfer pattern
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

90

Transfer pattern

• Consequences
– Advantages

• Helps to make layers independent

– Inconveniences
• Significantly increases the number of objects in the system

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

91

Transfer pattern
• Example code
public TUsuario implements Serializable {

public int id;
public String name;
public String eMail;
public boolean active;

public TUsuario(String nombre, String eMail)
{ this.id=0; this.name= name;

this.eMail= eMail; this.active= true; }

public TUsuario(int id, String nombre, String
eMail, boolean active)

{ this.id= id; this.name= name;
this.eMail= eMail; this.asset= asset; }

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Transfer pattern
public int getId()
{ return id; }

public String getName()
{ return name; }

public String getEMail()
{ return eMail; }

public boolean getActive()
{ return active; }

92Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Transfer pattern
public setId(int id)
{ this.id= id; }

public void setName(String name)
{ this.name= name; }

public void setEMail(String eMail)
{ this.eMail= eMail; }

public void setActivo(boolean activo)
{ this.asset= asset; }

}
93Intelligent Infrastructure Design for IoT- MiOT UCM

Antonio Navarro

94

Transfer pattern
public DAOUsuarioImp implements DAOUsuario {

public TUsuario read (int id)
{

//database access code

TUser user=
new TUser(id, name, eMail, active);

return user;
}
……………

}
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

95

DAO pattern

• Purpose
– Allows you to access the data layer (resources, in general),

providing object-oriented representations (e.g. transfer objects) to
your clients.

• Also known as
– Data access object
– Data access object

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

96

DAO pattern

• Motivation
– Information systems (and many programs) store user data
– This data usually has a structure, which is embodied in a

representation system (e.g., relational, XML).

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

97

DAO pattern

– Handling this data forces to:
• Know the access mechanisms of the data management system (e.g.,

database, operating system, etc.).
• Know the representation of data in the data management system (e.g.,

columns, elements, bytes, etc.).

– A business layer customer should be independent of these issues

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

98

DAO pattern

– Thus, the data layer could be changed without affecting the
business layer. Only the integration layer, which is lighter than
the business layer, would have to be updated.

• It must be applied when
– You want to make data representation and access independent of

data processing.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

99

DAO pattern

• Structure

DAO pattern structure

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

100

DAO pattern

Interaction between
related objects by
DAO pattern

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

101

DAO pattern

• Consequences
– Advantages:

• It separates the processing of data from its access and structure.
• Allows the business layer to be separated from the data layer.

– Inconveniences
• Increases the number of objects in the system

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern

• Let's see a simple example of a DB connection from

• The code:
– Connects to a database
– Send a query
– Process the result

102Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern
import java.sql.*

public void connectToAndQueryDatabase(String username, String
password)
{
try{
Connection con = DriverManager.getConnection(

"jdbc:myDriver:myDatabase",
username, password);

103Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table1");

while (rs.next()) {
int x = rs.getInt("a");
String s = rs.getString("b");
float f = rs.getFloat("c");

}
} finally {

if (stmt != null) pstmt.close();
if (con != null) con.close(); }

}

}

104

DAO pattern

• Let's see another simple example, extracted from the same
site, which makes an update

import java.sql.*;

public class UpdateCar {

public static void UpdateCarNum(int carNo, int empNo)throws
SQLException {

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern
Connection con = null;
PreparedStatement pstmt = null;
try { con = DriverManager.getConnection(

"jdbc:default:connection");
pstmt = con.prepareStatement(

"UPDATE EMPLOYEES " +
"SET CAR_NUMBER = ? " +
"WHERE EMPLOYEE_NUMBER = ?");

pstmt.setInt(1, carNo);
pstmt.setInt(2, empNo);
pstmt.executeUpdate();

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern
}
finally {

if (pstmt != null) pstmt.close();
if (con != null) con.close();

}
}

}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

108

DAO pattern

• Example code

public interface DAOUsuario {
public int create(TUser tUser);
public TUser read(int id);
public Collection<TUser> readAll();
public TUser readByName(String name);
public int update(TUser tUser);
public int delete (int id);

}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

109

DAO pattern
public class DAOUsuarioImp implements DAOUsuario {
……

public int create(TUser tUser)
{

int id= -1;
//connection to the database
PreparedStatement ps;

ps = connection.prepareStatement("INSERT INTO user (name, eMail,
active) VALUES (?,?,?,?)", Statement.RETURN_GENERATED_KEYS);

ps.setString(1, tUser.getName());
ps.setString(2, tUser.getEMail());
ps.setBoolean(3, tUser.getActive());
ps.execute();

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

110

DAO pattern
ResultSet rs= pstmt.getGeneratedKeys();
if (rs.next())
{

res= rs.getInt(1);
}

//close connection and handle exceptions

return id;
}
………
}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

111

DAO pattern

• Although it is obvious in these slides, it is essential that
DAOs capture and trigger the corresponding exceptions
when accessing external resources.

• Thus, the business layer will know what has happened if
there has been some kind of access failure.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern

• NOTE
– Although, in general, DAOs should only have the CRUD

operations (Create, Read, Update and Delete), it is possible that in
a multi-tier architecture without business objects, we may need to
enrich the DAOs to facilitate the management of the 1..n and m..n
relations.

112Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern

– For a class:

113Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern

– For a class, N end of a relation 1..N

114Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern

– For two extreme classes of a relation M..N

115Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern
– In the case of an association class, it is like two relations 1..N:

116Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern
– Unless we think that the intermediate class does not have sufficient

entity (i.e. does not have its own ID).

117Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern

• In the latter case, if the order lines, despite not being accessed outside the
order transfer, are updated frequently (e.g. due to changes in orders), it might
be appropriate to give them DAO, but not application service.

118Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern

– In any case, this option seems cleaner

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

119

DAO pattern

• This option together with a TOA (e.g. an HS operation) would allow to read
an order with its materials.

120Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

DAO pattern

• Or a material with the orders in which it appears

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

121

DAO pattern

• Or even a trolley

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

122

DAO pattern

– Martin Fowler is more pragmatic and would return a network of
transfers created on demand from the union of use cases.

• This option however, generates networks of pruned objects in order to solve
both the cycling and loading problem of all referenced elements.

123Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

124

Application Service Pattern

• Purpose
– Centralizes business logic.

• Also known as:
– Application service

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

125

Application Service Pattern

• Motivation
– In a multi-tier architecture, the business logic must be

somewhere.
– Putting it in the controller would couple presentation and business
– Putting it in the DAO would couple business and integration
– That is why we include it in the application services.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

126

Application Service Pattern

• It must be applied when
– You want to represent a business logic that acts on different

business services or objects
– You want to group related functionalities
– You want to encapsulate logic that is not represented by business

objects.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

127

Application Service Pattern

• Structure

Structure of the application service pattern

ApplicationService

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

128

Application Service Pattern

Interaction
between
objects
related by
the
application
service
pattern

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

129

Application Service Pattern

• Consequences
– Advantages

• Centralizes business logic
• Improved code reusability
• Avoids code duplication
• Simplifies the implementation of facades

– Inconveniences
• Introduces one more level of indirection

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

130

Application Service Pattern
• Example code:

public interface SAUser {
public int create(TUser tUser);
public TUser read(int id);
public Collection<TUser> readAll();
public int update(TUser tUser);
public int delete (int id);

}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

131

Application Service Pattern
public class SAUsuarioImp implements SAUsuario {

public int create(TUser tUser)
{ int id= -1;

DAOUsuario daoUsuario;
if (tUser!=null)
{ //access to DAO implementation

tUser read=
daoUser.readByName(tUser.getName());

if (read==null) id= daoUser.create(tUser);
}

return id;
}

…………………………………}

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

132

Application Service Pattern
• Note

– Although in the Core J2EE Patterns book example, application
services collaborate with each other to obtain business objects
(and by extension, data), this approach could complicate data
consistency validations in a non-EJB multi-user environment.

– In any case, note that the application service invoked in the
example (t136), does not seem to access persistent information.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

133

Application Service Pattern

• Note
– Application services do not usually have attributes to make them

lighter in weight.
– So where are the objects that have business attributes and

operations?
– These objects are the business objects

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

134

Pattern subject of business

• Purpose
– Represent business logic and domain model in object-oriented

terms
• Also known as:

– Business object

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

135

Pattern subject of business

• Motivation
– When there is little or no business logic, applications can allow

clients to access the data layer directly.
– Thus, a business layer component (e.g., UserImpServices)

could access a DAO directly.
– However, if there are a large number of computational processes

associated with the data in the client, these processes should be
encapsulated in an object representing a business object.

–
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

136

Pattern subject of business

• Should be applied when:
– A conceptual model with advanced validation rules and business

logic is available.
– You want to separate the business logic from the rest of the

application.
– You want to centralize the business logic
– You want to increase the reusability of the code

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

137

Pattern subject of business

• Structure

Structure of the business object pattern

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

138

Pattern subject of business

Interaction between
objects related by the
business object
pattern

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Business layer
Business purpose

139Relationship between business objects and application services Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

140

Pattern subject of business

• Consequences
– Advantages

• Promotes an object-oriented approach in the implementation of the
business model.

• Centralizes business behavior, promoting reusability.
• Avoid code duplication

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

141

Pattern subject of business

– Inconveniences
• Adds an indirection layer
• Can produce "inflated" objects of functionality
• Persistence of these business objects

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Pattern subject of business

• Example code
public class Employee {

private int id;
private String name;
private long salary;
private Department department;

…………………

Department getDepartment()
{ return department; }

…………………

142Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Pattern subject of business
public class Department {

private int id;
private String name;
private Collection<Employee> employees;

public int getId() {
return id; }

……………………………
public Collection<Employee> getEmployees() {

return employees;}
……………………………
}

143Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Note

144

Ana

Reality

…
..

reservation

Customer

name

id

Reservation

(1, 1)

(0, n)

id

Domain
model

Customer
id: int
name: string

Reservation
id: int
dateInput: string
nights:int
getClient():
Customer
cost(): float

1

Business with
business objects

<!element customer (id, name, revCli)>
………
<!element reservation (id, name, cliRev)>
………

Resources

Business with transfers
TransferClient
id: int
name: String

TransferReserve
id: int
dateInput: string
nights: int
idClient: int

Relationships between
reality, domain,
business and resources

customer

dateEntry

nights

Intelligent Infrastructure Design for IoT
Antonio Navarro

Pattern subject of business

• There is a fairly direct equivalence between:
– Domain and business model
– Tables and transfers
– The composite entities would be something like an intermediate

view between the domain model and the model proposed by the
transfers.

145Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Pattern subject of business

146

Equivalences between different models

Domain model

Business model

Composite Entity Model (JPA)

Relational model Model transfers

Logical view

Physical view

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

147

Domain store

• Purpose
– You want to separate the persistence from the object model.

• Also known as:
– Domain store
– Unit of work + Query object + Data mapper + Table data gateway

+ Dependent mapping + Domain model + Data transfer object +
Identity map + Lazy load

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

148

Domain store

• Motivation
– Many systems have a complex object model that requires

sophisticated persistence strategies.
– These strategies should be independent of the business objects, so

that they are not coupled with a specific warehouse.

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Domain store

– Thus, four simultaneous problems must be solved:
• Persistence
• Dynamic load
• Transaction management
• Concurrence

149Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

150

Domain store

• Context
– You want to omit persistence details in the business objects.
– The application could run in a web container
– The object model uses inheritance and complex relationships

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Domain store

• Solution
– Using a domain store to transparently persist an object model

151Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

152

• Description

Structure of the domain store pattern
Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

153Persistence of a business object Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Domain store

154
Access to simple attributes of a business object

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

155Structure of the domain store pattern Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

156
Interaction in the domain warehouse pattern

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

Note

• Double package structure:
– Layers
– Modules

157

presentation business integration
users
copies
loans
searches

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

• Design subsystems/code packages: layer-driven, with
replicated modules

– presentation
 users
 copies
 loans
 searches

– business
 users
 copies
 loans
 searches

– integration
 users
 copies
 loans
 searches

158Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

159

Conclusions

• This topic introduces the basic patterns of multilayer
architecture.

• We have seen a VERY basic multilayer. Missing:
– Business objects
– Dynamic load
– Concurrence
– Transactional

Intelligent Infrastructure Design for IoT- MiOT UCM
Antonio Navarro

